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A DIFFERENTIAL GAME OF UNLIMITED DURATION* 

R.A. ADIATULINA aad A.M. TARAS'YEV 

The properties of the value function (VP) in a different game of unlimited 
duration with depreciatfng performance functional are studied, and two 
methods of approximating the VP are compared. The VP does not satisfy 
a Lipschits condition, due to the type of functional. It is therefore 
not possible to prove in the general case differential inequalities for 
the usual directional derivatives. To overcome this difficulty, a 
generalization of the directional derivative of a continuous function is 
proposed. It consists in "smearing" the direction by higher-order 
increments than the increment of the argument. Necessary and sufficient 
conditions on the VP are obtained in terms of the directional derivative 
and of the conjugate derivatives. It is shown that the differential 
inequalities used to find the viscous solutions and the inequalities of 
the present paper are equivalent in every position. It is also shown 
that the method of discrete approximation of the stationary Hamilton- 
Jacobi equation for control problems is likewise applicable for problems 
of differential game theory. This method is shown to be equivalent to 
the familar following procedure. Problems of the present type arise e.g., 
when modelling processes with depreciating performance factor. such 
problems of optimal programmed control were previously studied in /l-3/ 
in the absence of unmonitored noise, which has to be regarded as an 
opponent player. 

1. Formulation of the problem, and preliminary results, We consider the 
controlled system 

5' = f (x, l&u), f E R", 28 E P f RP, v E Q c: R” 

with the performance functional 
41.1) 

J(x(.). u(s), v(*))=+fc-~*g(x(T), U(T), V(T))dT, i,>o 
t. 

wt 

Here, P and Q are compacta , the functions f(a) and g(s) are continuous with respect 
to the set of variables, satisfy a Lipschits condition with respect to I with constant L, and 
are bounded by the constant K; u is the control, v the noise, and tO E IO, -km) is the initial 
instant. 

We shall study the game (l.l), (1.2) in the context of the formalization of /4, 5/. We 
add to system (1.1) the (n-t- I)-th equation 

(1.3) 

z E R”, z E R’, t E ito, t-00). u E P, v tz Q, 3. > 0 

which is specified in differential form by functional (1.2). The payoff functional is defined 
by the relation 

J* (y (0)) = limr,..r (T) 4i.d) 

EIere,z(?')is the value of the (s + i)-th coordinate of the motion y(a) of system (1.3) 
at the instant T. Notice that the functionals J of (1.2) and J* of (1.4) are the same for 
zp=O* 

We consider the game (1.31, (1.4) in the classes of first player's strategies (t,&*U(t, 
*+I- P and of second player's counter-strategies (k&u)* Y (t,y,u):IO, i-m) X 
'Lhe sets of strategies U and of counter-strategies V are denoted by U and V 

415 



416 

respectively. 
has the value 

On the basis of the results of /4, 5/ we can show that the game (1.3), (1.4) 

0P(t,). y,).~-i~~fsllplinl~_~~ z(T)=supinf limr-+, z(T) (1 5) 
u uo v II0 

UEU, VCEV; 

The supremum (infim~) with respect to Y(-fis calculated in the set Y(t,, y,, U) (the set 
Y(& Yo, VI), whose elements are the motions !/(=I of system (1.31, generated by strategies u 
(counter-strategies V). 

Let us give some properties of the VF (t,y)* w"(t,y). 

Property 1. Let or0 : IO, Tl x R”+= ++ R’ be the VF in a game of finite duration T (TE 
IO, +mK with dynamic behaviour (1.3) and payoff functional 

Then, 

SUP I aJo (b Y) - COT’ (t, y)I < Kh-‘e-“T 
(t, y) E IO, 2'1 x R”+l 

Property 2. The VFo'can be written as 

JT* (Y (.)I = 2 (T) 

o" (t, y) = w* (t, I, 2) = 2 + e-kf w" (r) 
w" (r) = w" (0, x,0) 
ZER", z E R’, t E [O, +=f 

By (1.8), the function w": R”++ R’ is the VF of the game 

x' = f (5, u, v), x (0) = x0, u E P, v E Q 

J,(x(.,,~(.,,~(.))~+~e-~~~(x(~),~(~),v(~))dz. 
0 

We shall henceforth consider the function w". 

Property 3 = The XC? w” is bounded 

sup / w”(x) I< Kh-l 
XER” 

(1.6) 

(1.7) 

W) 

(1.9) 

h>O 

(1.10) 

(1.12) 

In view of estimate (1.7), the Lipschitx condition, see /4, 5/ for function @TO, and 
relation (1.8), we have 

Property 4. The VFw'is Holder continuous 

$up I I@ (4 - w” (4) I \<c 
x,+x. uu-SP 

i 

1, P>i 
y= (0, If, p=& c= 

PI P<i i 

(P--r*, P>* 
(p (I- y))-’ (K/L)‘-? I” = 1 
(p (i - &)-I (K~~)l-~, P < 1, tea/L 

Note 1. By estimates (1.121, if p>l the VF w0 satisfies a Lipschitx condition. If 
pgl , examples of games (1.31, (1.4) can be found, i.e., the functions f(.) and g(.f can be 
chosen, such that wQ does not satisfy a Lipschitz condition. 

2. Differential inequalities. The most important properties of the VF are the so- 
called stability (u- and v--stability) properties, which can be treated as an optimality 
(sub- or super-optimality) principle of dynamic programming. Differential inequalities were 
proposed in /6, 7/, which express the stability properties in infinitesimal form for VF which 
satisfy a Lipschits conditibn, in a game of limited duration. Similar inequalities can be 
obtained for the Htjlder continuous VF in the game (1.9) of unlimited duration. 

We will introduce some notation and definitions. 
We denote by IS the class of functions r(.):IO,i-m)~-+ I?' such that lim 11 r @)/I 6-l = 0, 

6 j 0. 
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Definition. The lower and upper derivatives of the continuous function w:fi" H R' at 
point x with respect to the direction h are defined respectively by the equations 

a_w(x)l(h)= inf liminf AwP 
T(.)EIS blo 

(2.1) 

a+v(~)[(h)= sup limsup AwP 
r(,EIS alo 

Aw = w (x + 6h + r (6)) - w (5) 

the function w satisfies a Lipschits condition, we can put r(.)=O in (2.1) and omit 
operation inf,sup with respect to r(.)~ IS; this definition of the directional derivatives 
used in /6-0/. 
Let (co A is the convex hull of set A) 

H (I, 1) = yt :J; ((1, f (x, u, u)> + g (5, ~1 u)) 
c 

xczRn, 1ER” 

The functionH(. called the Hamiltonian of game (1.9). 

Theorem 1. The necessary and sufficient conditions for 10: R" ++ R' to be the VF of game 
(1.9) are: 

1) the function w is bounded and HSlder continuous with estimates (l.lO), (1.12); 
2) for all XER" we have 

hw (x) > sup in: (h, + a- 20 (I) I (h,)) (2.2) .” 

h, 
VGQ, h= h EH,(x,P) II I 2 

hw(x) 6 i;fa;~ (h, + a+w (x)\(U) 

UEP, h= 
h, n I h EH,(x, u, 
e 

or for all (x,Z)E R" X R" we have the equivalent inequalities 

aup (0, h) - a_ w (x) I (h)) > --hw (4 + H (xv 4 (2.3) 
hSR” 

inf (0, h)-- a+ w (4 I @)I < --hw (4 + H (5, 4 
hERn 

The quantities on the left-hand sides of (2.3) are called respectively the upper and 
lower conjugate derivatives of wI calculated at the point x /7/. 

Note 2. At points where 1" is differentiable, conditions (2.2) and (2.3) transform into 
the stationary Hamilton-Jacobi equation 

--hw (z) + H (2, grad u) (2)) = 0 (2.4) 

If lu satisfies a Lipschits condition, it is differentiable almost everywhere, so that it 
satisfies Eq.(2.4) almost everywhere. The concept of a viscous solution of Eq.(2.4) was 
introduced in'/9, lO/ and the existence and uniqueness of such a solution were proved. The 
definition of this concept contains differential inequalities of a different type to (2.2) 
and (2.3), in terms of the sub- and super-differentials /lo/ 

--hw (z) + H (z, d) < 0, 1: E H", d E D,w (z.) (2.5) 
--hw (5) f If (z. d) > 0, z E R”, d E D*w (5) 

(the sets Dew(z) and D* w(t) are respectively the sub- and super-differentials of the function 
w at the point 3). It can be shown that relations (2.5) are equivalent to inequalities (2.3), 
i.e., the VFur" of the game (1.9) is the viscous solution of Eq.(2.4). 

3. Approximation of the value function. We will consider two methods of approxi- 
mation. The first is the familiar /5, ll/ following procedure , at each step of which the 
programmed max-min operator works in some form. The second, the method of discrete approxi- 
mation of the stationary Hamilton-Jacobi Eq.(2.4), was proposed in /l, 2/ for constructing 
the function of the optimal result in the control problem (u(e) is the measurable control) 



4l.8 

inf {+f e-h7 * g (r(z), u(t))dt:u(.):[O, + L-Q)-+ I-' 1 (:i.i) 

where x(.) is given by the differential equation 

2' (t) == I* (2 (t), u (t)). t E [O, +bo), z (0) = zo 

The proof of the convergence of the discrete approximation of the equation 

--hw (.I$ -t- ~nnp:," (<grad IL* (J-), f* Cc, u)> + g* (5, UN = 0 

(8.2) 

(3.3) 

corresponding to problem (3.1) t (3.2) and the estimation of this convergence are based /l, 2/ 
on the concept of a viscous solution. Since the viscous solution of Eq. (3.3) and the VI' w" 
aret by Note 2, equivalent concepts, the same technique with suitable modifications can be 
used to obtain similar results for the game (1.9). 

Let us discuss these constructions in more detail. 
We start with the following procedure. For its application, we use properties 1 and 2 

of the VF of game (1.3), (1.4). 
From (l.i'), (1.8) we have 

sup 1 w” (z) - oTo (0, 5. O)l < Kh-‘ehT, T c 10, +m) (3.4) 

Here and throughout, sup is taken with respect to x E R’“. 
To approximate the VF (t,z,z) t-+ ~r"(t,z,z): [O, T] X R" X R' h R’, o”(T,r,z) = Z in the 

game (1.3), (1.6) with a fixed instant of termination, we shall use the following procedure. 
It amounts to the following. The time interval [O, 2'1 is divided into m equal parts with step 
h>O, so that T = m-h. At the instant T the approximation orb (T, a, -1 of the VF'OT~(T,.,+) 
is given by 

arh (T, .r, z) = Z, x E R", z E R’ (3.5) 

We next assume that the approximation WT'((~ i- $)A, *, *) (z = O,...,m -1) at the instant 
(i + I)h has been constructed. To find the approximation COrh(ih, *, .) we use the relation 

W$(ih, s, "'"Inn; $ (Wrh((i + l)h, I -+ hf(r, u, u), (3.6) 

2 + he-h('Q (.r, u, U))] 

x E: Ii", z E RI, i = 0,. ..,m - 1 

The operator on the right-hand side of (3.6) isthe programmed max-min operator, which is 
usually employed in the following constructions /5, ll/. 

From (3.5), (3.6) we have 

tirh(Ih,X,z)=z + e-~~i*~~h(~~,~~ i=O,...,m (3.7) 

Here, 

~~~(ih, 5)=inn~~~; {e-hkzur"((i + l)h (3.8) 

I -I- hf (x, u, u)) + hg (I, u, v)), i = 0, . . ., m - 1 

WT~ (mh, x) = 0, x E R” W-0 

Using the method for finding estimate (15.1) in /S/, we can prove a theorem for the 
following procedure (3.5)-(3.9): 

Theorem 2. The approximation mZh(O, .) is uniformly convergent to the VF mr" (0, ~~0) 
as hJ0. We have the estimate 

SUP 1~~0 (0, X, 0) - wTh (0,x) I< Vt*L j efL-QT dz 
0 

From (3.4) and (3.10) we have 

T 

sup 1 w” (x) - wTh (0, z) 1 Q h’/*L 1 e(L-a)r dt + Rh-WJ, 
n 

(3.10) 

(3.11) 

Inequality (3.11) implies the estimate 



sup ) w” (I) - WTIh (0, P) I < f3w 
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(3.12) 

where the numbers y and C are given by (1.12), h E (0, I), the instant T, depends on h and is 
given by the minimum condition for the right-hand side in (3.11). 

We now consider the discrete programming method /l, 2 / as applied to the stationary 
Hamilton-Jacobi Eq.(2.4) corresponding to game (1.9). 

The discrete approximation of Eq.(2.4) is defined as the equation 

--d (x) + :r=ni; ((1 - hh)lS (x + hf (5, u, u)) + (3.13) 

hg (x, u, u)) = 0, .z E R”, h E (0, l/h) 

The next theorem can be prwed in the same way as Theorems 2.1, 2.2 of /l/. 

Theorem 3. Let h e (0, l/h). Then (3.13) has a unique solution wh in the class of HCilder 
continuous functions. Estimates (1.10) and (1.12) hold for the solution wh. 

The proof is based on the fact that the operator II given by 

nw (5) = nil.. Inn; ((1 - hh)w (x + hf (x, u, v)) + hg (5, u,v)) (3.14) 
c - 

is a contraction operator with contraction coefficient (1 --Ah). By the principleofcontraction 
mappings, there exists a unique, bounded, and Halder continuous solution wh of Eq.(3.13), and 

an iterative procedure iZph = rhi& with initial approximation -h "0 1 satisfying conditions 

(l.lO), (1.12), convergent to it uniformly. 

In particular, with iZoh E 0 we have the estimate 

sup 1 w” (x) - Eph (x) 1 < Kh-’ (1 - hh)P, p = 1, 2, . . . (3.15) 

Theorem 4. As hJ0 the solution d of Eq.(3.13) is locally uniformly convergent to the 
viscous solution w" of Eq.(2.4), which, by Note 2, is the VF of game (1.9). 

Theorem 5. We have the estimate 

sup 1 w” (z) - d’ (I) 1 < BhV/* (3.16) 

where h E (0, min {l/h, I)), the Hslder exponent y is given by (1.12), and B is a constant. 
From (3.15) and (3.16), with hE(O, min{l/h,1}) we obtain 

sup I w” (z) - Eph (x) I < BhV/a + Kh-’ (1 - ah)‘, p = 1, 2, . . . (3.17) 

Inequality (3.17) implies the estimnte 

aup I w” (4 - @“p,(z) I < Ghv’* (3.18) 

where y is given by (1.12), G is a constant, hE(O, min{l/h,1}), and the number p* depends 
on h and is found from the condition (1 -M)p* g hVI2. 

Comparing (3.8) and (3.14) , and (3.12) and (3.18), we can see that the following procedure 
and the discrete programming method, while different in form and in the methods of proving 
the convergence and the estimates, in essence give the same procedure for approximating the 
VF d of the game (1.9), with a convergence estimate of order hVJ1. 
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ON THE EXISTENCE OF AN INTEGRAL INVARIANT OF A SMOOTH DYNAMIC SYSTEM* 

V.V. KOZLOV 

The existence of an integral invariant with a smooth density for a dynamic 
system in a cylindrical phase space is considered. The well-known Krylov- 
Bogolyubov theorem guarantees the existence of an invariant measure for 
any system in a compact space (for a discussion of these topics see /l, 2/). 
But this measure is often concentrated in invariant sets of small di- 
mensionality and in general is not an integral invariant with a summable 
density. For useful applications of ergodlc theory, and in the theory 
of the Euler-Jacobi integrating factor, an invariant measure in the form 
of an integral invariant with smooth density is useful. Effective 
criteria for the existence of such measures in smooth dynamic systems 
are described. The general results are illustrated by examples from non- 
holonomic mechanics. 

1. Formulation of the problem. Consider the cylindrical phase space M" = Rk X T"mK 
with coordinates x1, . . ..z., of which k are linear and n-k angular. Let v be a smooth 
vector field in w; thecorresponding differential equation is 

x' = u (z) (1.1) 

We consider the existence for system (1.1) of the integral invariant 

mes(D)== i f (x)d”x (1.2) 

with smooth positive density f: M”- R. 
The criterion for the existence of integral invariant (1.2) is the Liouville equation 

div (fv) = 0, which, since f is positive, can be rewritten as 

w' = - div ~3, w = In f (1.3) 

Clearly, w is a smooth function in M". 
By the theorem on the rectification of trajectories, in a small neighbourhood of a non- 

singular point of system (1.2) there is an entire family of integral invariants. Thus it is 
worth considering the integral invariant problem either in the neighbourhood of a position 
of equilibrium, or in a sufficiently large domain of the phase space where the trajectories 
are reversible. 

We know that the equation of motion of holonomic mechanical systems always have a natural 
invariant measure (the shape of the volume in the space of cotangent fiberings of the space of 
positions). It was pointed out in /3/ that non-holonomic systems may in general not have an 
invariant measure with an integrable density. 

We will mention two examples of non-holonomic systems which will be used to illustrate 
our results. 

lo. The problem of the rolling of a heavy rigid body over an absolutely rough horizontal 
plane. Chaplygin found the invariant measure in the case when the surface is bounded by a 
sphere and the centre of mass of the body is the same as its geometric centre /4/. An in- 
variant measure can also be shown to exist when the rigid body has an axis of symmetry (either 
geometric or dynamic). 
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